Evidence for long-lasting subcortical facilitation by transcranial direct current stimulation in the cat.
نویسندگان
چکیده
The main aim of the study was to examine the effects of transcranial polarization on neurons in two descending motor systems, rubro- and reticulospinal. Anodal DC current was applied through an electrode in contact with the skull over the contralateral sensori-motor cortex, against an electrode placed between the skull and the ipsilateral temporal muscles in deeply anaesthetized cats. Its effects were estimated from changes in descending volleys evoked by electrical stimuli applied in the red nucleus (RN), medial longitudinal fascicle (MLF; to reticulospinal fibres) and the pyramidal tract (PT; to corticospinal or corticoreticular fibres). The descending volleys were recorded from the surface of the spinal cord at a cervical level. Rubrospinal neurones were activated either directly or indirectly, via interpositorubral fibres. Reticulospinal neurons were likewise activated directly and indirectly, via other reticulospinal or corticospinal fibres. Transcranial polarization facilitated transsynaptic activation of both rubrospinal and reticulospinal neurons, shortening the latency of the indirect descending volleys and/or increasing them, Direct activation of descending axons was much less affected. The facilitation of all subcortical neurons examined was potentiated by repeated applications of transcranial direct current stimulation (tDCS) and outlasted the polarization by at least 1-2 h, replicating tDCS effects on indirect activation of cortical neurons. The results indicate that the beneficial effects of tDCS on motor performance in humans may be due to more efficient activation of not only cortical but also subcortical neuronal systems. Combined actions of tDCS on cortical and subcortical neurones might thus further improve recovery of motor functions during rehabilitation after central injuries. 249/250.
منابع مشابه
Subcortical effects of transcranial direct current stimulation in the rat.
Transcranial direct current stimulation (tDCS) affects neurons at both cortical and subcortical levels. The subcortical effects involve several descending motor systems but appeared to be relatively weak, as only small increases in the amplitude of subcortically initiated descending volleys and a minute shortening of latencies of these volleys were found. The aim of the present study was theref...
متن کاملPresynaptic actions of transcranial and local direct current stimulation in the red nucleus.
The main aim of the present study was to examine to what extent long-lasting subcortical actions of transcranial direct current stimulation (tDCS) may be related to its presynaptic actions. This was investigated in the red nucleus, where tDCS was recently demonstrated to facilitate transmission between interpositorubral and rubrospinal neurons. Changes in the excitability of preterminal axonal ...
متن کاملEffects of transcranial direct current stimulation on pain intensity in patients with chronic low back pain: a systematic review of literature
Introduction: Low back pain (LBP) is common musculoskeletal disorder in today’s societies, which lead to inducing chronic pain and consequently pathological changes in brain function in most of the patients. Therefore, using effective intervention for controlling chronic pain in patients with LBP is very important. According to the evidence, some studies indicated that pain intensity is decreas...
متن کاملSubcortical Structures in Humans Can Be Facilitated by Transcranial Direct Current Stimulation
Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique that alters cortical excitability. Interestingly, in recent animal studies facilitatory effects of tDCS have also been observed on subcortical structures. Here, we sought to provide evidence for the potential of tDCS to facilitate subcortical structures in humans as well. Subjects received anodal-tDCS an...
متن کاملEffects of left prefrontal transcranial direct current stimulation on the acquisition of contextual and cued fear memory
Objective(s): Behavioral and neuroimaging studies have shown that transcranial direct current stimulation, as a non-invasive neuromodulatory technique, beyond regional effects can modify functionally interconnected remote cortical and subcortical areas. In this study, we hypothesized that the induced changes in cortical excitability following the application of cathodal or anodal tDCS over the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of physiology
دوره 591 13 شماره
صفحات -
تاریخ انتشار 2013